

Question 1

Sketch the curve ${\cal C}$ with equation:

$$y=\sin(x-30^\circ),\quad -360^\circ \leq x \leq 360^\circ.$$

- (a) Write down the exact coordinates of the points at which ${\cal C}$ meets the two coordinate axes. (3 marks)
- (b) Solve, for $-360^{\circ} \leq x \leq 360^{\circ}$,

$$4\sin(x-30^\circ)=\sqrt{6}-\sqrt{2},$$

showing each stage of your working.

(5 marks)

eClassroom

Question 2

Sketch the curve ${\cal C}$ with equation:

$$y=2\cos x, \quad -360^\circ \leq x \leq 360^\circ.$$

- (a) Write down the exact coordinates of the points at which ${\cal C}$ meets the two coordinate axes. (3 marks)
- (b) Solve, for $-360^{\circ} \leq x \leq 360^{\circ}$,

$$2\cos x = 1$$
,

showing each stage of your working.

(5 marks)

eClassroom

Question 3

Sketch the curve ${\cal C}$ with equation:

$$y=- an x,\quad 0\leq x\leq 2\pi.$$

- (a) Write down the exact coordinates of the points at which ${\cal C}$ meets the two coordinate axes. (3 marks)
- (b) Solve, for $0 \leq x \leq 2\pi$,

$$-\tan x = -rac{1}{2},$$

showing each stage of your working.

(5 marks)

Question 4

Sketch the curves ${\cal C}$ and ${\cal D}$, where:

$$C:y=rac{1}{2}\sin x \quad ext{and} \quad D:y=\cos(2x), \quad 0\leq x\leq 4\pi.$$

- (a) Write down the exact coordinates of the points at which ${\cal C}$ and ${\cal D}$ meet the two coordinate axes.
- (3 marks)
- (b) Determine the number of solutions for x in the interval $0 \le x \le 4\pi$ where C = D. (2 marks)
- (c) Determine the number of solutions for x in the interval $0 \leq x \leq 40\pi$ where C=D. (3 marks)

