

The line l_1 has equation:

$$3x - 4y + 12 = 0.$$

(a) Find the gradient of l_1 .

(1 mark)

Given that:

- The point A has coordinates (4,2),
- The line l_2 passes through A and is perpendicular to l_1 ,
- (b) Find the equation of l_2 , giving your answer in the form y=mx+c, where m and c are constants to be found.

(3 marks)

The lines l_1 and l_2 intersect at the point M.

- (c) Using algebra and showing all your working, find the coordinates of M.
- (Solutions relying on calculator technology are not acceptable.)

(3 marks)

Given that the diagonals of a square ABCD meet at M:

(d) Find the coordinates of the point C.

(2 marks)

Total for question = 9 marks

The line l_1 has equation:

$$4x + 3y - 12 = 0.$$

(a) Find the gradient of l_1 .

(2 marks)

The line l_2 is perpendicular to l_1 and passes through the point (6,4).

(b) Find the equation of l_2 in the form y=mx+c, where m and c are constants.

(3 marks)

Total for question = 5 marks

Question 3	eClassroom
The points P , Q , and R have coordinates $P(1,3)$, $Q(5,7)$, and $R(9,3)$, respective	ely.
(a) Prove that $\angle PQR=90^{\circ}.$ (3 marks)	
Given that the point S is such that $PQRS$ forms a rectangle,	
(b) Find the coordinates of S . (2 marks)	
Total for question = 5 marks	

A tree was planted in the ground.

- Exactly 3 years after it was planted, the height of the tree was $12\,\mathrm{m}.$
- Exactly 7 years after it was planted, the height of the tree was $20\,\mathrm{m}$.

Given that the height, H metres, of the tree t years after it was planted in the ground, can be modeled by the equation:

$$H = at + b$$
,

where a and b are constants:

- (a) Find the value of a and the value of b. (4 marks)
- **(b)** State, according to the model, the height of the tree when it was planted. (1 mark)

The line l_1 has equation:

$$2y - x = 20.$$

The line l_2 passes through the point A(10,0) and is perpendicular to l_1 .

Lines l_1 and l_2 meet at the point P.

(a) Find, using algebra and showing your working, the coordinates of ${\cal P}.$

(5 marks)

Given that l_1 meets the x-axis at the point B:

(b) Find the area of triangle BPA.

(3 marks)	
-----------	--

