

In this question, you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Sketch the line l with equation x+y=6 and the curve C with equation $y=6x-2x^2+1$.

The line l intersects the curve C at the points P and Q.

(a) Find, using algebra, the coordinates of ${\cal P}$ and the coordinates of ${\cal Q}$. (4 marks)

The region R, shown shaded, is bounded by C, l, and the x-axis.

(b) Use inequalities to define the region R.

(3 marks)

Total for question = 7 marks			

The curve C has the equation:

$$y = 2x^2 - 8x + 5.$$

(a) Write C in the form:

$$y = a(x+b)^2 + c,$$

where a, b, and c are constants to be found.

(3 marks)

The point M is the minimum turning point of C.

(b) Deduce the coordinates of M.

(2 marks)

The line l is the normal to C at the point P, where x=3.

Given that l has the equation y = kx + c, where k is a constant:

- (c) (i) Find the coordinates of P.
- (3 marks)
- (ii) Find the value of k.
- (3 marks)

The finite region R is bounded by l, C, and the line through M parallel to the y-axis.

- (d) Identify the inequalities that define R.
- (3 marks)

Total for question = 14 marks

International A-Level	Pure 1	Equations and Inequalities

In this question, you must show all stages of your working. Solutions relying on calculator technology are not acceptable.

Solve the inequality:

$$4x^2 - 5x + 1 \ge 2x + 3.$$

Total for question = 4 marks				

- (a) On the same axes, sketch the graphs of y=x+3 and $y=x^2-3x-10$, showing the coordinates of all points at which each graph crosses the coordinate axes. (4 marks)
- (b) On your sketch, show, by shading, the region R defined by the inequalities:

$$y < x + 3$$
 and $y > x^2 - 3x - 10$.

(1 mark)

(c) Hence, or otherwise, find the set of values of \boldsymbol{x} for which:

$$x^2 - 4x - 12 < 0.$$

(3 marks)

Total for question = 8 marks

International A-Level	Pure 1	Equations and Inequalities

Solve the simultaneous equations:

$$\left\{egin{aligned} 2x+3y&=10\ x^2+y^2&=25 \end{aligned}
ight.$$

Total for question = 6 marks				

