

The equation $x^2+(4k+3)x+2=0$, where k is a constant, has real roots.

- (a) Show that k satisfies the inequality $16k^2+24k+1\geq 0.$ (3 marks)
- (b) Find the range of possible values for k, giving your boundaries as fully simplified surds. (4 marks)

Total: 7 marks	

The equation $k(2x^2+5x+6)=3-4x$, where k is a real constant, has real roots.

- (a) Show that k satisfies the inequality $23k^2-64k-16\leq 0$. (4 marks)
- **(b)** Find the range of possible values for k. (4 marks)

Total: 8 marks		

Find the range of values of k for which the quadratic equation $kx^2+6x+3(k+4)=0$ has real roots.				

The function $f(x)=x^2+bx+c$ has a minimum point at $(3,-2)$ and passes through the point $(0,7)$.				
(a) Find the values of b and c . (4 marks)				

The equation $x^2+4px+2p=0$, where p is a constant, has no real roots.

- (a) Show that p satisfies the inequality $16p^2-8p<0$. (3 marks)
- (b) Find the range of possible values for p. (2 marks)

Total: 5 marks		

