

Sketch **Figure 2**, which shows part of the curve y=f(x), where:

$$f(x) = (x-2)^2(x+4).$$

(a) Show that:

$$f'(x) = 3x^2 + 4x - 8.$$

(3 marks)

Points A and B are distinct points that lie on the curve y=f(x). The gradient of the curve at A is equal to the gradient of the curve at B.

Given that point A has x-coordinate 2:

- **(b)** Find the x-coordinate of point B.
- (5 marks)

Total for question = 8 marks

International A-Level	Pure 1	Differentiation

The curve C has equation:

$$y = 2x^3 + kx^2 + 6x + 8,$$

where k is a constant.

(a) Find $\frac{dy}{dx}$.

(2 marks)

The point P, where x=-2, lies on C. The tangent to C at P is parallel to the line with equation 2y-10x-1=0.

(b) Find the value of k.

(4 marks)

(c) Find the y-coordinate of P.

(2 marks)

(d) Find the equation of the tangent to C at P, giving your answer in the form ax+by+c=0, where a, b, and c are integers.

(2 marks)

Total for question = 10 marks

International A-Level	Pure 1	Differentiation

D:((ving each answer in its simplest form:
I litterentiate With rechect to $oldsymbol{x}$, all	JINA ASCH SHEWAT IN ITE EIMHIAET TARM:
Differentiate with respect to the di	

- (a) $(1-2x)^2$.
- (3 marks)
- **(b)** $\frac{x^3}{2} \frac{1}{x^2}$. (4 marks)

Total for question = 7 mark	(S
-----------------------------	----

The curve ${\cal C}$ has equation:

$$y = 2x^3 - 6x^2 + 4x + 2.$$

- (a) Find $\frac{dy}{dx}$, simplifying your answer.
- (3 marks)
- (b) Find the coordinates of the point on ${\cal C}$ where the gradient is ${\bf 2}.$
- (5 marks)

Total for question = 8 marks

eClassroom

Question 5

Total for question = 6 marks

Given that:

$$y = \frac{3x^2 + 5}{x^2}.$$

(a) Find $\frac{dy}{dx}$, giving each term in your answer in its simplest form. (6 marks)

eClassroom

Question 6

Given that:

$$y=rac{4x^3+2x-7}{x^{1/2}}.$$

(a) Find $\frac{dy}{dx}$, giving each term in your answer in its simplest form. (6 marks)

Total for question = 6 marks

